Replace null values
Description
he Replace Null Values activity is designed to automatically fill missing or empty entries in your dataset, helping ensure data completeness and integrity for downstream processing.
It works by allowing users to define a list of specific columns where null (null
) or blank (""
) values may exist. For each such column, a default replacement value can be configured along with the expected data type. The activity then traverses each row and substitutes any null or blank cell with the appropriate typed value.
Supported data types include:
- String – e.g.,
"Unknown"
,"N/A"
,"Not Provided"
- Number – e.g.,
0
,-1
, or any decimal/integer value - Date – e.g.,
"2023-01-01"
(must be parsable in common formats) - Boolean – e.g.,
true
orfalse
This activity is especially useful in cases where:
- Downstream activities (like filters, aggregations, or joins) depend on non-null values.
- You’re preparing datasets for machine learning, reporting, or transformation pipelines.
- Clean, uniform inputs are essential — such as dashboards or business rules relying on default fallbacks.
By replacing incomplete data in a structured and type-safe manner, this activity simplifies pre-processing while preserving schema consistency.
Tip: Only columns with explicitly defined mappings will be processed. All other columns remain unchanged.
Input
Field | Description |
---|---|
Data | Tabular data from the previous activity. |
Output
Field | Description |
---|---|
Data | The transformed table with null/empty values replaced in specified columns. |
Configuration Fields
Field | Required | Description |
---|---|---|
Columns Map | Yes | List of column mappings to fill. Each map defines the column, value, and type. |
Each Columns Map
item includes:
Subfield | Required | Description |
---|---|---|
Column Name | Yes | Name of the column to fill if null or empty. |
Data Type | Yes | The type of value (String, Number, Date, Boolean) |
Value | Yes | The default value to use when cell is null/empty |
Sample Input
Name | Country | Age | JoinedOn | IsActive |
---|---|---|---|---|
Alice | India | 30 | 2023-04-10 | true |
Bob | ||||
Carol | UK | 22 | 2023-02-18 | false |
Sample Configuration
Column Name | Data Type | Value |
---|---|---|
Country | String | Unknown |
Age | Number | 0 |
JoinedOn | Date | 2023-01-01 |
IsActive | Boolean | true |
Sample Output
Name | Country | Age | JoinedOn | IsActive |
---|---|---|---|---|
Alice | India | 30 | 2023-04-10 | true |
Bob | Unknown | 0 | 2023-01-01 | true |
Carol | UK | 22 | 2023-02-18 | false |