Description
The Filter on Falsy Values activity evaluates a specific column for values that are considered “falsy” and applies the configured action to the matching rows.
Falsy values typically represent the absence of meaningful data and include:
- false
- 0
- NaN
- ""(empty string)
- undefined
This is useful in workflows that require cleansing, flagging, or isolating incomplete or semantically empty data.
Use case:
Use this activity before transformations or aggregations to clean data rows that might result in logical inconsistencies or misleading results due to falsy entries.
| Type | Description | 
|---|
| Data | Input dataset containing the column to test | 
Output
| Type | Description | 
|---|
| Transformed Data | Dataset with rows filtered or flagged as per logic | 
Configuration Fields
| Field Name | Required | Description | 
|---|
| Column | Yes | Specifies the column to evaluate for falsy values. | 
| Falsy Values | Yes | Select one or more falsy values to match. Supported values: false,0,NaN,""(empty string),undefined. | 
| Actions | Yes | Action to apply when a match is found: Keep Matching Rows – retain only rows with falsy valuesRemove Matching Rows – exclude rows with falsy valuesFlag Rows – add a column flagging matching rows (1 = match, 0 = no match)
 | 
| Flag Rows Column Name | Conditional | Name of the flag column to be created. Required only when action is Flag Rows. | 
| column_name | other_column | 
|---|
| 1 | data | 
| 0 | more data | 
| NaN | test | 
|  | example | 
| 2 | content | 
Sample Configuration 1
| Field | Value | 
|---|
| Column | column_name | 
| Falsy Values | 0,NaN | 
| Action | Flag Rows | 
| Flag Rows Column Name | falsy_flag | 
Sample Output 1 (Action: Flag Rows)
| column_name | other_column | falsy_flag | 
|---|
| 1 | data | 0 | 
| 0 | more data | 1 | 
| NaN | test | 1 | 
|  | example | 0 | 
| 2 | content | 0 | 
Sample Configuration 2
| Field | Value | 
|---|
| Column | column_name | 
| Falsy Values | 0,NaN,"" | 
| Action | Remove Matching Rows | 
Sample Output 2 (Action: Remove Matching Rows)
| column_name | other_column | 
|---|
| 1 | data | 
| 2 | content | 
You can chain this with Filter on Bad Meaning or Fill Columns for improved data quality and resilience.