Description
The Filter on Falsy Values activity evaluates a specific column for values that are considered “falsy” and applies the configured action to the matching rows.
Falsy values typically represent the absence of meaningful data and include:
false
0
NaN
""
(empty string)
undefined
This is useful in workflows that require cleansing, flagging, or isolating incomplete or semantically empty data.
Use case:
Use this activity before transformations or aggregations to clean data rows that might result in logical inconsistencies or misleading results due to falsy entries.
Type | Description |
---|
Data | Input dataset containing the column to test |
Output
Type | Description |
---|
Transformed Data | Dataset with rows filtered or flagged as per logic |
Configuration Fields
Field Name | Required | Description |
---|
Column | Yes | Specifies the column to evaluate for falsy values. |
Falsy Values | Yes | Select one or more falsy values to match. Supported values: false , 0 , NaN , "" (empty string), undefined . |
Actions | Yes | Action to apply when a match is found:- Keep Matching Rows – retain only rows with falsy values
- Remove Matching Rows – exclude rows with falsy values
- Flag Rows – add a column flagging matching rows (1 = match, 0 = no match)
|
Flag Rows Column Name | Conditional | Name of the flag column to be created. Required only when action is Flag Rows. |
column_name | other_column |
---|
1 | data |
0 | more data |
NaN | test |
| example |
2 | content |
Sample Configuration 1
Field | Value |
---|
Column | column_name |
Falsy Values | 0 , NaN |
Action | Flag Rows |
Flag Rows Column Name | falsy_flag |
Sample Output 1 (Action: Flag Rows)
column_name | other_column | falsy_flag |
---|
1 | data | 0 |
0 | more data | 1 |
NaN | test | 1 |
| example | 0 |
2 | content | 0 |
Sample Configuration 2
Field | Value |
---|
Column | column_name |
Falsy Values | 0 , NaN , "" |
Action | Remove Matching Rows |
Sample Output 2 (Action: Remove Matching Rows)
column_name | other_column |
---|
1 | data |
2 | content |
You can chain this with Filter on Bad Meaning or Fill Columns for improved data quality and resilience.