Skip to content

Filter on falsy values

Description

The Filter on Falsy Values activity evaluates a specific column for values that are considered “falsy” and applies the configured action to the matching rows.
Falsy values typically represent the absence of meaningful data and include:

  • false
  • 0
  • NaN
  • "" (empty string)
  • undefined

This is useful in workflows that require cleansing, flagging, or isolating incomplete or semantically empty data.

Use case:
Use this activity before transformations or aggregations to clean data rows that might result in logical inconsistencies or misleading results due to falsy entries.


Input

TypeDescription
DataInput dataset containing the column to test

Output

TypeDescription
Transformed DataDataset with rows filtered or flagged as per logic

Configuration Fields

Field NameRequiredDescription
ColumnYesSpecifies the column to evaluate for falsy values.
Falsy ValuesYesSelect one or more falsy values to match. Supported values: false, 0, NaN, "" (empty string), undefined.
ActionsYesAction to apply when a match is found:
  • Keep Matching Rows – retain only rows with falsy values
  • Remove Matching Rows – exclude rows with falsy values
  • Flag Rows – add a column flagging matching rows (1 = match, 0 = no match)
Flag Rows Column NameConditionalName of the flag column to be created. Required only when action is Flag Rows.

Sample Input

column_nameother_column
1data
0more data
NaNtest
example
2content

Sample Configuration 1

FieldValue
Columncolumn_name
Falsy Values0, NaN
ActionFlag Rows
Flag Rows Column Namefalsy_flag

Sample Output 1 (Action: Flag Rows)

column_nameother_columnfalsy_flag
1data0
0more data1
NaNtest1
example0
2content0

Sample Configuration 2

FieldValue
Columncolumn_name
Falsy Values0, NaN, ""
ActionRemove Matching Rows

Sample Output 2 (Action: Remove Matching Rows)

column_nameother_column
1data
2content

You can chain this with Filter on Bad Meaning or Fill Columns for improved data quality and resilience.