Description
The Filter on Values activity filters or flags rows based on specified values within selected columns. It supports a variety of matching techniques and normalization strategies to suit different data scenarios.
Useful for retaining only relevant rows (e.g., filter only “Electronics” category), flagging suspect values, or excluding unwanted data entries before further processing.
Type | Description |
---|
Data | Tabular dataset with one or more columns to filter |
Output
Type | Description |
---|
Transformed Data | Filtered or flagged data based on value-matching criteria |
Configuration Fields
Field Name | Required | Description |
---|
Columns | Yes | One or more columns to apply the filter condition. |
Value | Yes | The value to match in the selected columns. |
Matching Mode | Yes | Defines how the value is matched: - Complete Value
- Substring
- Regex
|
Normalization Mode | No | Adjusts how comparisons are made:- Case Sensitive
- Case Insensitive
- Accent-Insensitive
|
Flag Rows | No | If enabled, flags rows using a 0/1 indicator instead of filtering them out. |
Flag Rows Action | Conditional | Rendered when Flag Rows is enabled. Determines flag logic:- Flag if any column matches
- Flag if all columns match
|
Flag Rows Column Name | Conditional | Name of the new column to store the flag. Required when Flag Rows is enabled. |
Product ID | Product Name | Category | Price |
---|
101 | Laptop | Electronics | 75000 |
102 | Phone | Electronics | 50000 |
103 | Chair | Furniture | 3000 |
Sample Configuration
Field | Value |
---|
Columns | Category |
Value | Electronics |
Matching Mode | Complete Value |
Normalization Mode | Case Insensitive |
Flag Rows | Enabled |
Flag Rows Action | Flag if any column matches |
Flag Rows Column Name | IsElectronics |
Sample Output (Flag Rows Enabled)
Product ID | Product Name | Category | Price | IsElectronics |
---|
101 | Laptop | Electronics | 75000 | 1 |
102 | Phone | Electronics | 50000 | 1 |
103 | Chair | Furniture | 3000 | 0 |
Sample Output (Flag Rows Disabled)
Product ID | Product Name | Category | Price |
---|
101 | Laptop | Electronics | 75000 |
102 | Phone | Electronics | 50000 |
Combine this with Extract Text, Normalize Text, or Lookup Replace for enhanced preprocessing before filtering values.